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In an earlier publication [J. Chem. Phys.1999, 111, 10452] we theoretically investigated the photoelectron
spectrum of allene (C3H4

+) pertinent to the A˜ 2E/B̃2B2 interacting electronic manifold of its radical cation
(C3H4

+). Employing a linear vibronic coupling scheme it was demonstrated that in addition to the EXB Jahn-
Teller activity within the 2e electronic manifold, there is a strong (EXB) + E pseudo-Jahn-Teller interaction
with the B̃2B2 electronic state, which causes the diffuse structures observed at high energies. Here, the same
photoelectron spectrum is reinvestigated including all fifteen vibrational degrees of freedom of the system
and a higher order coupling scheme. The coupling parameters of the Hamiltonian are calculated by ab initio
methods. The photoelectron band is calculated by the wave packet propagation method within the
multiconfiguration time-dependent Hartree (MCTDH) scheme and compared with the experimental results of
Baltzer et al. [Chem. Phys.1995, 196, 551]. The progressions at low energies are identified unambiguously
by calculating the “stick” vibronic spectrum within the A˜ 2E electronic manifold, considering five relevant
vibrational modes, and the effect of the higher order couplings is clearly demonstrated. The calculations
show that it is necessary to re-assign the progressions in the low-energy region of the spectrum to the vibrational
modeV3, which is of CdC stretching and HsCsH bending character and the combination of symmetric (V2)
and antisymmetric (V7) HsCsH bending vibrational modes. In addition, we report on the time-dependent
nuclear dynamics by snapshots of the time-evolved wave packet and by the diabatic electronic populations.

I. Introduction

Valence photoelectron spectroscopy is a powerful and robust
tool to investigate the vibrational energy level structure of
ionized and neutral molecules,1-6 and over the past few decades
this tool has been applied to a variety of organic hydrocarbons
in order to record the energy spectrum of the corresponding
cations. The development of ZEro Kinetic Energy (ZEKE)
spectroscopy was a major step forward in this field, enabling
spectra to be recorded with an unprecedented energy resolution
and rotationally resolved transitions.4,6 For almost all molecular
systems photoelectron transitions occur to more than one final
electronic state, and these are often coupled together through
the nuclear motion (known asVibronic coupling). The resulting
energy level spectrum then bears the signature of interesting
nonadiabatic effects. In particular, the importance ofconical
intersectionsof molecular electronic states in this context clearly
emerged7,8 and has received increasing attention in recent
years.9-12 A well-known subclass of conically intersecting
potential energy surfaces is represented by Jahn-Teller (JT)
systems,13,14 in which the symmetry-enforced electronic degen-
eracy is unstable (for nonlinear conformations) with respect to
suitable symmetry-reducing nuclear displacements. Another
subclass deals with the interaction between a degenerate and a
nondegenerate electronic state. These are identified as pseudo-
Jahn-Teller (PJT) systems in the literature.8,15-17 Such vibronic
interactions of molecular electronic states lead to a breakdown

of the Born-Oppenheimer approximation, and in dealing with
them in theoretical studies, one needs to monitor the nuclear
motion simultaneously on more than one electronic surface. The
ubiquity of conical intersections in this regard has been explicitly
demonstrated by several authors.7-12

Allene (C3H4
+) is an organic hydrocarbon with 15 normal

vibrational modes and belongs to theD2d symmetry point group.
The 15 vibrational modes of allene have the following irreduc-
ible representations:18

The valence photoelectron spectrum of allene (C3H4
+) has been

studied by several experimental groups.1,19-24 The ground and
the first excited states of the allene radical cation (C3H4

+) are
of the 2E type. Each of them is orbitally degenerate at theD2d

symmetry configuration. The symmetric direct product of the
E representation in theD2d point group decomposes as

The vibrational modes of A1 symmetry cannot destroy the
degeneracy of the2E electronic manifold, whereas the vibrational
modes of B1 and B2 symmetry can lift this degeneracy, and
thus display EXB JT activity.8,13,14,25 The participation of
nondegenerate vibrational modes in the JT activity is quite rare
and can be encountered in molecules possessing only a two- or
four-fold axis of symmetry, for example, those belonging to
the D2d, D4h, or D4d symmetry point groups. The degenerate
vibrational modes (E) do not participate in the nuclear dynamics
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either in the X̃2E or in the Ã2E electronic manifold of C3H4
+.

However, because of the selection rule (in theD2d point group)

they can couple the A˜ 2E electronic manifold with the next higher
B̃2B2 electronic state in first order and display PJT activity. PJT
interactions induced by degenerate vibrational modes have been
encountered in other situations.15,16The Ã2E/B̃2B2 photoelectron
spectrum of allene represents an interesting example in which
to study the interplay between the JT and PJT effects, involving
nondegenerate JT active vibrational modes.

The experimental A˜ 2E/B̃2B2 photoelectron band of allene
shows resolved progressions at low energies and a highly diffuse
structure at high energies.22-24 Woywod and Domcke26 carried
out theoretical investigations to study the JT effect in the A˜ 2E
ionic manifold. With a two-state and four-mode model Hamil-
tonian and a linear vibronic coupling (LVC) scheme they could
reproduce most of the low-energy part of the A˜ 2E/B̃2B2

photoelectron band recorded by Yang et al.22 Due to the strength
of the coupling parameter, they assigned the low-energy
structures in this photoelectron band as progressions along the
symmetric and the antisymmetric H-C-H bending vibrational
modes V2 (A1) and V7 (B2), respectively. This assignment,
however required a significant empirical adjustment of the linear
vibronic coupling constants and vibrational frequencies for the
V2 andV7 modes on excitation. However, we note that Yang et
al.22 had assigned the structure as progressions along theV2 and
V3 vibrational modes.

In ref 17 we have investigated the A˜ 2E/B̃2B2 photoelectron
band of C3H4

+ by constructing a three-state and ten-mode model
Hamiltonian within the LVC scheme by an ab initio quantum
dynamical approach. Our results were shown to compare well
with the high-resolution He I excited recording of Baltzer et
al.23 The main focus in this study was to clearly demonstrate
the interplay between the JT and the PJT effects in the
photoelectron transition in allene and we, as well as Baltzer et
al.,23 followed the assignments of Woywod and Domcke for
the low-energy progressions in the photoelectron band.

In the present article we set out to reinvestigate the A˜ 2E/
B̃2B2 photoelectron band of allene with a model Hamiltonian
including all 15 vibrational modes and a higher order coupling
scheme. The higher order coupling constants are calculated by
the ab initio outer valence Green’s function (OVGF) method.27,28

With the inclusion of the quadratic and the bilinear coupling
terms in the Hamiltonian the progressions in the low-energy
part of the envelope are shown to be formed by the vibrational
modesV3 andV2 + V7. These progressions are unambiguously
identified by calculating the “stick” vibronic spectrum of the
JT interacting Ã2E electronic manifold. The full three-state and
fifteen-mode spectrum is computed by wave packet propagation
methods within the multiconfiguration time-dependent Hartree
(MCTDH) scheme.29 The MCTDH scheme has been found to
be very successful in the treatment of a variety of problems
including reactive and surface scattering, photodissociation and
the photoexcitation of vibronically coupled systems. For further
details of the method and its applications see, for example, the
recent review30 and references therein. Of particular interest in
this context are a set of studies on the photoexcitation of the
pyrazine molecule. There, the full quantum mechanical nuclear
dynamics of all 24 vibrational modes in two coupled electronic
states have been accurately treated.31-33 The present example
is an extension of this treatment with three interacting electronic
states involved in the nuclear dynamics.

The paper is organized in the following way. In section II
we describe the theoretical background where the model diabatic
vibronic Hamiltonian, computational details of the photoelectron
spectrum, wave packet calculations by the MCTDH scheme,
and the ab initio computations of the coupling constants entering
the Hamiltonian are presented. In section III the theoretical
photoelectron spectrum is shown and discussed, and compared
with the experimental recording. The time-dependent dynamics
for the ultrafast Ã2E r B̃2B2 interstate conversion is then
illustrated in terms of the diabatic electronic populations and
snapshots of the wave packet along the most relevant normal
mode coordinate. Finally, summarizing remarks are presented
in section IV.

II. Theoretical Background

A. Vibronic Hamiltonian and the Photoelectron Spectrum.
The photoexcitation process of allene is described by a Franck-
Condon (FC) transition from its electronic ground state to the
Ã2E/B̃2B2 interacting electronic manifold of the radical cation
(C3H4

+). This involves excitation of an electron from the 1e/
3b2 valence orbitals of allene.23 To monitor the nuclear motion
in the Ã2E/B̃2B2 electronic manifold of the cation, we construct
a model vibronic Hamiltonian8 in the dimensionless normal
mode coordinates of the ground electronic state (1A1) of allene
pertinent to theD2d symmetry point group. We resort to a
diabatic electronic representation34 in which the diverging kinetic
coupling terms (of the adiabatic electronic representation)
change into smooth potential couplings. That is, in a diabatic
electronic representation the elements of the vibronic Hamil-
tonian are weakly varying functions of the nuclear coordinates
and the Condon approximation holds well in the photoexcitation
process. In what follows we defineQi as the dimensionless
normal coordinate of neutral allene associated with the vibra-
tional modeVi. The vibrational modesi ) 1-3 are of A1

symmetry,i ) 4 is of B1 symmetry (JT active),i ) 5-7 are of
B2 symmetry (JT active), andi ) 8-11 are of E symmetry
(PJT active). The nature of each of these modes is described in
detail in the literature.17,26,35Following our previous study17 the
Hamiltonian is constructed as follows:

HereH0 ) uN + V0, with

is the Hamiltonian matrix associated with the electronic ground
state of allene and is defined in terms of unperturbed harmonic
oscillators with frequenciesωi. 1 is a (3× 3) unit matrix. The
elementseij in the above Hamiltonian matrix refer to the
interacting (component) states and are expanded in a Taylor
series up to second order with respect to the totally symmetric
and the JT-active vibrational modes. Using elementary symmetry
selection rules the following result is obtained:8,15,36
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The quantitiesEE
0 and EB2

0 in the above equations are the
vertical ionization energies of the A˜ 2E and B̃2B2 electronic states
of C3H4

+, respectively.κi and κ′i are the linear intrastate
coupling constants for the totally symmetric vibrational modes
in the Ã2E and B̃2B2 electronic states of the ion, respectively.
The quantitiesλi andλ′i denote the linear JT and PJT coupling
constants, respectively. The quantitiesγi and γ′i are the qua-
dratic coupling constants in the A˜ 2E and B̃2B2 electronic states,
respectively.Ωij are the bilinear coupling constants belonging
to the A1 vibronic symmetry (i, j e 3) or B2 symmetry (5e i,
j e 7). Higher order couplings are not considered here nor are
the mixed A1-B2 bilinear terms. Thex andy components of
the degenerate vibrational modesV8 - V11 are denoted byQix

andQix, respectively.
The photoelectron spectrum is calculated by Fermi’s Golden

rule. The photoelectron intensity is given by

where|Ψ0〉 is the initial vibrational and electronic ground state
of allene with energyE0. |ΨV〉 is the final Ã2E/B̃2B2 vibronic
state of the allene radical cation andEV is the vibronic energy.
T̂ is the transition operator that describes the interaction of the
valence 1e and 3b2 electrons of allene with the external radiation
with energyE. The initial and the final states are given by

where |Φ〉 and |ø〉 represent the (diabatic) electronic and
vibrational part of the wave function, respectively. The super-
scripts 0, Ex/Ey, and B2 refer to the1A1 electronic ground state
of allene, to thex/y components of the A˜ 2E state, and to the
B̃2B2 state of the radical cation, respectively. Using eq 8 the
excitation function of eq 7 can be rewritten as

with

The quantitiesτm denote the generalized oscillator strengths of
the final Ã2E and B̃2B2 electronic states of the radical cation.8,17

The matrix elements of the transition operator are known to be
weakly varying function of the nuclear coordinates and are
treated as constants, in accordance with the applicability of the
generalized Condon approximation in the diabatic electronic
basis.37

The stick vibronic spectrum is calculated numerically by
representing the vibronic HamiltonianH in a direct product basis
of harmonic oscillator eigenstates ofH0. In this basis|øV

m〉
takes the following form:8

Herem is the electronic state index,nl is the quantum number
associated with thelth vibrational mode, andk is the total
number of such modes. The summation runs over all possible
combinations of quantum numbers associated with each mode.
For each vibrational mode the oscillator basis is suitably
truncated in the numerical calculations. The maximum level of
excitation for each mode can be approximately estimated from
its coupling strength. The Hamiltonian matrix expressed in a
direct product harmonic oscillator basis is highly sparse. Since
the final electronic states have different vibronic symmetry the
Hamiltonian matrix, in fact, decouples into blocks with E and
B2 symmetry. We tridiagonalize this sparse Hamiltonian matrix
by the Lanczos algorithm38 prior to diagonalization. The
diagonal elements of the eigenvalue matrix give the position of
the vibronic lines and the relative intensities are obtained from
the squared first components of the Lanczos eigenvectors.8,12

B. Wave Packet Dynamics: MCTDH Method.The MCT-
DH method provides an efficient algorithm for the solution of
the time-dependent Schro¨dinger equation. The basis of the
method is to use a multiconfigurational ansatz for the wave
function, with each configuration expressed as a Hartree product
of time-dependent basis functions, known as single-particle
functions. The wave packet ansatz appropriate for the nonadia-
batic problem studied here is known as themultiset formula-
tion:31,39

where{R} are indices denoting the discrete set of electronic
states included in the calculation. Thus, the wave packet,Ψ(R),
associated with each electronic state is described using a
different set of single-particle functions{æjκ

(R,κ)}. Note that the
multiindex,J ) j1...jp, depends implicitly on the stateR as the
maximum number of single-particle functions may differ for
different states. The summation∑J is shorthand for a summation
over all possible index combinations for the relevant state. At
this point, the variables for thep sets of single-particle functions
are defined only as the “coordinate of a particle”. The particle
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coordinate may be one-dimensional or multidimensional. Equa-
tions of motion for the expansion coefficients,AJ

(R), and single-
particle functions,æjκ

(R,κ) have been derived using a variational
principle. Full details of the derivation of these equations, their
properties, and an efficient integration scheme for their integra-
tion are given in ref 30.

The use of a variational principle ensures that the single-
particle functions evolve so as to optimally describe the true
wave packet; i.e., the time-dependent basis moves with the wave
packet. This provides the efficiency of the method by keeping
the basis optimally small. Unfortunately, the method suffers
from an exponential growth in the computational resources
required with the number of particles included in a calculation.
This generally restricts a calculation to below 8-10 particles.

The physical system is described by a set off coordinates,
Q1, ... , Qf. In allene,f ) 15, and so it is impossible to use a set
of single-particle functions to describe each vibrational mode.
Fortunately, there is no reason a particle coordinate cannot be
a set of coordinates, i.e.,qκ ) [Qi, Qj, ...]. The single-particle
functions are then multidimensional functions of the set of
system coordinates and the number of particlesp < f. By doing
this the computational resources can be significantly reduced,
and larger systems can be treated without in any way affecting
the variational nature of the method.32,33

To calculate the photoelectron spectrum using a time-
dependent formulation, the Fourier transform representation of
the delta function is used in the Golden rule formula eqs 7 and
9. This expression can then be reduced to the Fourier transfor-
mation of the time autocorrelation function of the wave packet.
In the present case the different spatial symmetries of the
interacting electronic states result in the presence of a vibronic
symmetry; i.e., the vibronic secular matrix becomes block
diagonal upon a suitable ordering of basis states. The Golden
rule expression is then

wherej ) 1, 2 corresponds to the two components (x andy) of
the Ã2E electronic state andj ) 3 to the B̃2B2 electronic state.
Cj(t) ) 〈øj(t)0)|e-iHt/pøj(t)0)〉 is the time autocorrelation
function of the wave packet starting in the electronic statej.

C. Ab Initio Calculations. The details of the ab initio
calculations are described in the previous paper.17 We briefly
repeat them here, focusing on the calculation of the higher order
coupling constants.

The geometry optimization and the calculations of harmonic
vibrational frequencies (ωi) of allene in its ground electronic
state (1A1) are carried out at the Møller-Plesset perturbation
theory (MP2) level employing the correlation-consistent polar-
ized valence triple-ú (cc-pVTZ) Gaussian basis set of Dunning.40

Along with the vibrational frequencies, the transformation matrix
from the symmetry coordinates to the mass-weighted normal
coordinates is obtained. The dimensionless normal coordinates
(Qi) are obtained by multiplying the latter withxωi.

18

The coupling parameters of the Hamiltonian are derivatives
of the adiabatic potentials of the cation with respect to the
corresponding normal mode coordinates calculated at the
equilibrium geometry of the neutral (Q ) 0). The linear coupling
constants for the A˜ 2E and B̃2B2 electronic states are defined as
follows:

Here 2∆VE is the (signed) difference of the JT split potential
energy surfaces of the A˜ 2E state, and care has to be taken that
symmetry-adapted potential energy functions are used to
calculate it in order to avoid the discontinuous behavior of the
adiabatic potential energy functions atQ ) 0. An expression
analogous to eq 15a holds forκ′i. The interstate coupling
constants for the degenerate vibrational modes are given by

Here∆E ) ∆VQi
2 - ∆V0

2, where∆VQi and∆V0 are the potential
energy differences between the B˜ 2B2 and Ã2E ionic states for
the normal mode displacementQi, and at the equilibrium
geometry (Q ) 0), respectively. The second order and the
bilinear coupling constants, which constitute essential ingredients
of the present work, are similarly given by

The above coupling constants are determined by calculating
vertical ionization energies of allene by the outer valence
Green’s function method, again employing the cc-pVTZ basis
set. The electronic structure calculations were performed for a
series of displacements (from the MP2 equilibrium geometry
at Q ) 0) along the dimensionless normal coordinateQi ) 0.5
and 1.0 using the GAUSSIAN program package.28 The energy
derivatives appearing in eqs 16-18 are then approximated by
a suitable finite difference formula. The resulting coupling
constants for the A˜ 2E and the B˜ 2B2 electronic states are listed
in Table 1 and 2. We note that the linear coupling constants
differ slightly from those noted in the previous article17 because
of the use of a more accurate (i.e., symmetric) finite difference
formula.

III. Results and Discussion

A. Photoelectron Spectrum.The full composite photoelec-
tron band for the A˜ 2E/B̃2B2 electronic states of C3H4

+ is obtained
by the wave packet propagation approach within the MCTDH
scheme. All 15 normal vibrational modes are considered in the
calculation. The parameters of the Hamiltonian are those
reported in Tables 1 and 2.

The first step in setting up an MCTDH calculation is to
choose a set of primitive basis functions in which the single-
particle functions, their time derivatives, and the Hamiltonian
can be represented at each point in time along the propagation
path. For large systems, such as that studied here, a combination
scheme for the degrees of freedom must then be selected to
reduce the computational resources required for a calculation.
Finally, a set of single-particle functions must be specified in
which the evolving wave packet is accurately represented. Table
3 summarizes the choices made for the description of the allene
system.
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|τj|2Re∫0
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The primitive basis chosen is a harmonic oscillator discrete
variable representation (DVR) (see, for example, Appendix B
in ref 30 for more details of this basis). The 15 vibrational modes
are combined into 6 particles, so that the product primitive grid
required for each particle remains a reasonable size. The
combinations used are given in Table 3. For example, the first
particle contains three degrees of freedom, theV1, V4, andV6

vibrational modes. The primitive basis set for this particle is
thus 12× 8 × 8 ) 768 functions. The initial single-particle
functions are sets of ortho-normalized harmonic oscillator
functions in the mass-frequency scaled coordinate system used.

In the multiset formalism, one set is required for each particle
for each electronic state. The initial wave function is the ground
state vibrational eigenfunction, which is simply a product of
the first single-particle functions in each set. The primitive basis
used means that the initial wave function for the propagations
is exactly represented.

The sizes of both the primitive and single-particle function
bases are selected so that the calculations are converged with
respect to the spectrum; i.e., the calculated spectrum does not
change on adding functions.

The photoelectron band thus obtained is shown in Figure 1
(panel a) along with the high-resolution He I excited experi-
mental recording of Baltzer et al.23 (panel b). The theoretical
spectrum is a sum of contributions from the three states. From
eq 14, each contribution is the Fourier transform of the
autocorrelation functionCj(t) computed with an initial wave
packet located on thejth electronic state. In Figure 1a the full
theoretical spectrum is shown by the solid line and the

TABLE 1: Ab Initio Calculated Linear and Quadratic Coupling Constants for the Ã 2E and B̃2B2 Statesaof the Allene Radical
Cation (C3H4

+) and the Vibrational Frequencies of Allene in Its Electronic Ground (1A1) Stateb

mode
κ or λ
Ã2E

κ′
B̃2B2

λ′
Ã2E X B̃2B2

γ
Ã2E

γ′
B̃2B2

ω
expt35 ω

V1 (A1) -0.288 -0.164 0.282 0.011 0.3945 0.3738
V2 (A1) -0.251 0.450 -0.060c 0.018 0.1846 0.1789
V3 (A1) -0.209 0.00002 0.0035 0.013 0.1359 0.1330
V4 (B1) 0.103 -0.045 0.1110 0.1072
V5 (B2) 0.276 0.280 0.3944 0.4224
V6 (B2) 0.114 0.0055 0.2529 0.2426
V7 (B2) 0.334 -0.065c 0.1782 0.1733
V8 (E) 0.245 0.4055 0.4322
V9 (E) 0.237 0.1260 0.1238
V10 (E) 0.133 0.1069 0.1043
V11(E) 0.044 0.0446 0.0440

aAb initio value of the vertical energy gap between theÃ2E andB̃2B2 electronic states is 0.21 eV.b All quantities are in eV if not otherwise
stated. The theoretical (experimental) results represent the harmonic (fundamental) vibrational frequencies.c Adjusted value-0.02 eV.

TABLE 2: Ab Initio Calculated Bilinear Coupling
Constants (eV) for the Ã2E Electronic Manifold of the Allene
Radical Cation (C3H4

+)]

modesi,j Ωij

V1, V2 0.043a

V1, V3 0.0042
V2, V3 -0.022b

V5, V6 0.004
V5, V7 0.043a

V6, V7 0.0185

a Adjusted value 0.025 eV.b Adjusted value-0.03 eV.

TABLE 3: Details of the Basis Functions Used To Describe
the Particles in the MCTDH Calculationsa

SPF basis [Ex, Ey, B2]c

particle normal modes primitive basisb Initial Ey
d Initial B2

e

1 (V1, V4, V6) (10, 14, 10) [6, 6, 6] [7, 7, 6]
2 (V2, V3) (32, 24) [9, 10, 8] [12, 12, 8]
3 (V10x, V10y, V11x) (12, 12, 8) [6, 6, 6] [9, 9, 8]
4 (V5, V7) (10, 30) [8, 8, 6] [8, 8, 7]
5 (V8x, V8y, V11y) (10, 10, 8) [6, 7, 6] [7, 7, 8]
6 (V9x, V9y) (18, 18) [6, 7, 6] [10, 10, 9]

a The calculations were converged with respect to the spectrum.
Vibrational modes bracketed together were treated as a single particle,
e.g., particle 1 is a 3-dimensional particle including modesV1, V4, and
V6. The primitive basis is the number of Harmonic oscillator DVR
functions, in the dimensionless coordinate system, required to represent
the system dynamics along the relevant mode. The SPF basis is the
number of single-particle functions used, one set for each of the three
electronic states. Different numbers of functions were required depend-
ing on whether the initial wave packet was in the Ey or B2 state.b The
primitive basis for each particle is the product of the one-dimensional
bases; e.g., for particle 1 the primitive basis was 10× 14 × 10 )
1400 functions. The full primitive basis consists of a total of 9.63×
1016 functions.c Calculations starting in the Ey and B2 state are listed
separately. E.g., starting in the Ey state particle 1 required 6 functions
in each state.d There are 296 640 configurations altogether and the run
required 7.5 h and 95 MB on a DEC 500au workstation.e There are
1 040 256 configurations altogether and the run required 30 h and 243
MB on a DEC 500au workstation.

Figure 1. Photoelectron spectrum for the A˜ 2E/B̃2B2 electronic manifold
of C3H4

+. The intensity (in arbitrary units) is plotted as a function of
the energy of the final vibronic states. (a) Results obtained by the wave
packet propagation method within the MCTDH scheme considering
all 15 vibrational degrees of freedom. The full photoelectron band is
shown by the solid line and the contributions of E and B2 vibronic
symmetries are shown by the dotted and dashed lines, respectively.
(b) The 21.218 eV He I excited experimental recording of Baltzer et
al., reproduced from ref 23.
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contributions from the E and B2 vibronic symmetries are plotted
separately and are shown by the dotted and the dashed lines,
respectively. We have used a value|τE/τB2| ) 1/2 in the full
spectrum in order to better reproduce the relative height of the
envelopes for the A˜ 2E and B̃2B2 ionic states. The vertical energy
gap between the A˜ 2E and B̃2B2 ionic states is fixed at 0.43 eV,
which is close to the value we obtained from the ab initio
calculations (cf. Table 1). The vertical ionization potentials,EE

0

) 14.93 eV andEB2

0 ) 15.36 eV, are used, which reproduce
the origin of the photoelectron band at the experimentally
observed energy at 14.1 eV.

To calculate the above spectrum, the wave packet is
propagated for 120 fs. Since we start with a real initial wave
packet, we can use the relationshipC(2t) ) 〈Ψ*( t)|Ψ(t)〉, which
allows an increase of the energy resolution (∆E ) 2πp/T) in
the photoelectron spectrum by a factor of 2 by effectively
doubling the total propagation timeT.41 The resultingC(t) up
to time T ) 240 fs is plotted in Figure 2. The dashed and the
solid curves are obtained from two separate calculations by
locating an initial wave packet on one of the components of
the Ã2E and on the B˜ 2B2 electronic state, respectively. It can
be seen thatC(t) of the Ã2E electronic manifold exhibits a
regular recurrence pattern. On the other hand,C(t) of the B̃2B2

electronic state is quite irregular and decays much faster than
that of the Ã2E electronic manifold. This behavior is manifested
in the photoelectron spectrum in Figure 1a, which reveals a sharp
progression of spectral peaks at low energies due to the JT
activity in the Ã2E electronic manifold, and a highly diffuse
structure (relating to the faster decay ofC(t)) at high energies
due to the PJT interactions of this manifold with the B˜ 2B2

electronic state.
In an experimental spectrum the lines are broadened due to

the resolution of the spectrometer. This effect can be added to
the calculated spectra by convoluting the spectral lines with a
suitable peaked curve, which in the time-dependent picture is
equivalent to damping the autocorrelation function by a time-
dependent function. By a careful choice of the function, effects
due to the finite length of the propagation can be eliminated.
For example, the function30

is taken in the present case, withT the length of the time
propagation. Ast f T, F(t)C(t) f 0, therefore, the artifacts in

the spectrum due to finite time Fourier transformation are
reduced. MultiplyingC(t) with F(t) is equivalent to convoluting
the spectrum with the Fourier transform ofF(t), which in this
case reads30

with a full width at half-maximum (fwhm) ofΓ ) 3.4/T (fs)
(hereΓ ) 14 meV). Further phenomenological broadening, due
to the spectral resolution and neglect of the interaction with an
external heat bath, is added by the function

with τr being the relaxation of the system. This leads to a
Lorentzian broadening of the spectrum withΓ ) 2/τr. In Figure
1a the spectra of E and B2 vibronic symmetries are obtained by
damping the respective autocorrelation functions withτr ) 50
fs (i.e., hereΓ ) 26 meV).

To clearly identify the progression of peaks in the above
photoelectron band at low energies and the impact of higher
order couplings on them, we carried out companion calculations
and systematically analyzed the “stick” vibronic spectrum of
the Ã2E electronic manifold (without the PJT coupling with the
B̃2B2 state). The stick vibronic spectra thus obtained are
presented in Figure 3a-d (as a function of vibronic energies
relative to the ground state of neutral allene) along with the
spectral envelope obtained by convoluting the corresponding
stick spectrum with a Lorentzian function with fwhm of 10 meV.
The spectrum in Figure 3a is obtained by considering five
vibrational modesV2, V3, V4, V5, and V7 in the dynamical
treatment. We have used 25, 25, 15, 15, and 25 harmonic
oscillator basis functions for the above modes in that order. This
choice leads to a secular matrix of dimension 7031250 pertinent
to the two-state matrix Hamiltonian within the A˜ 2E electronic
manifold. This Hamiltonian matrix is then tridiagonalized using
3000 Lanczos iteration steps to obtain the stick spectrum (see
also section II.A above). The convergence of the latter is
explicitly checked by altering the number of basis functions as

Figure 2. Absolute value of the time autocorrelation function|C(t)|
of the Ã2E electronic manifold (solid line) and the B˜ 2B2 electronic state
(dashed line) of the allene radical cation.C(t) is computed by locating
the initial wave packet separately on the respective electronic state.

Figure 3. Vibronic spectra for the A˜ 2E electronic states of the allene
radical cation (C3H4

+) in the absence of PJT coupling. Stick spectra
are obtained by considering the (a)V2, V3, V4, V5, andV7, (b) V2, V3, V5,
andV7, (c) V2, V4, V5, andV7, and (d)V3, V4, V5, andV7 vibrational modes
in the calculations (see text for further details). The stick vibronic
spectrum in each panel is convoluted with a Lorentzian function with
fwhm 10 meV to generate the spectral envelope.

F̃(E) ) 4πT

π2 - (2ET)2
cos(ET) (19)

G(t) ) exp(- t
τr

) (20)

F(t) ) cos(πt
2T) (18)
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well as the number of Lanczos iteration steps. In this way it
has been ensured that the stick spectrum and the spectral
envelope are converged to within drawing accuracy. The
coupling parameters of the Hamiltonian are those reported in
Tables 1 and 2. The spectrum of Figure 3a compares well with
the low-energy part of the full composite band presented in
Figure 1a. The fine structure of the two envelopes are identical,
from which it can be concluded that PJT couplings are not
important for the progression of peaks at low energies.

Two different progressions are clearly visible in the spectrum
in Figure 3a. They are∼0.13 and∼0.16-0.17 eV apart.
Energetically they are close to the frequencies of theV3, V7,
and V2 vibrational modes, which are 0.136, 0.178, and 0.185
eV, respectively, in the neutral ground state (cf. Tables 1 and
2). Therefore, the observed line spacings must correspond to
the above frequencies in the neutral allene altered by the
Duschinsky rotation of the normal modes42 (an amount nearly
equal to the quadratic coupling constants) in the cationic A˜ 2E
electronic manifold. In their experimental work, Yang et al.22

assigned the above progressions to the symmetric vibrational
modesV3 andV2. In a theoretical work, Woywod and Domcke26

have re-assigned these progressions to be due to the JT-active
mode V7 and the symmetric modeV2. Subsequently, the
experimental work of Baltzer et al.23 and our previous theoretical
work17 followed the assignments of Woywod and Domcke.26

However, the present more elaborate investigation reveals that
these progressions are due to the symmetric modeV3 and a
combination of modesV2 andV7. This aspect is further discussed
below.

In Figure 3b we show the above spectrum calculated without
including the JT-active torsional modeV4 (B1). It can be seen
by comparing with Figure 3a that the torsional mode doesnot
contribute to the progression of spectral lines at low energies.
This mode is only moderately excited at higher energies and
thus contributes to the diffuseness of the spectral envelope at
those energies. The spectrum obtained by considering the
vibrational modesV2, V4, V5, and V7 is shown in Figure 3c.
Without the modeV3, the characteristic structures in the
photoelectron band disappear and the spectral progression
dramatically changes, almost to a single mode progression. The
progression in Figure 3c clearly confirms that theV2 and V7

vibrational modes combine together to form a single progression
in the full spectrum. The spectrum in Figure 3c is to be
compared with the one resulting from a linear coupling model
considering the same vibrational modes and shown in our earlier
paper (see Figure 5b in ref 17). The difference in the two spectra
clearly shows the importance of the higher order coupling terms
employed in the present investigation. The spectrum calculated
by considering vibrational modesV3, V4, V5, andV7 is shown in
Figure 3d. It is clearly revealed by Figure 3d that the vibrational
modesV3 andV7 form two distinct progressions. We note that
the bilinear coupling constantΩ23 is set to zero in the
calculations of the spectra shown in Figure 3c,d. In comparison
with Figure 3a one can see thatΩ23 redistributes the spectral
intensity betweenV2 and V3 significantly. We note that the
vibrational modeV5 plays no significant role in the low-energy
progression. It can also be seen from Table 1 that the excitation
strength (κ5

2/2ω5
2) of this mode is quite small. However, we

retain this mode in the present analysis in order to be consistent
with our earlier study.

Although the overall appearance of the composite photoelec-
tron band of the A˜ 2E/B̃2B2 electronic manifold of C3H4

+

presented in Figure 7 of ref 17 looks similar to the full 15-
mode results in Figure 1a above, there are some distinct

differences between them. In particular, the spectral intensity
at high energies improved on considering all 15 vibrational
modes. The rather prominent dip in the envelope in the∼14.8-
15.5 eV energy range becomes more shallow in the present
simulation and compares better with the experimental results.
Also in our previous study17 we employed a LVC scheme and
we had to adjust the vibrational frequencies and coupling
constants ofV2 and V7 vibrational modes to a large extent in
order to obtain a reasonable agreement with the experimental
recording. The vertical energy gap between the A˜ 2E and B̃2B2

states (cf. Table 1) was adjusted to 0.65 eV. In contrast to these,
in the present investigation results are obtained by adjusting
only a few higher order coupling constants (see Tables 1 and
2). The vertical energy gap is also adjusted to a lesser extent to
0.43 eV. Finally, the physics underlying the resolved line
structures at low energies is different (as stated above) in the
two studies.

The above findings on the A˜ 2E and B̃2B2 band are further
complemented by investigating the geometry change of allene
on photoexcitation. First we focus on the LVC model and
calculate the geometry change in internal coordinates in the
subspace of the A1 and B2 vibrational modes. The transformation
matrix from the dimensionless normal coordinate to the internal
coordinate is obtained by the GF matrix method of Wilson et
al.18 Without the PJT coupling the adiabatic potential energies
of the Ã2E electronic manifold can be obtained from the EXB
JT part of the electronic Hamiltonian in eq 4:

whereV0 ) Σi)1
7 ωiQi

2/2 and1 is a (2× 2) unit matrix. The
eigenvalues of the above Hamiltonian are given by8,17,43

where - refer to the two adiabatic sheets. Since the results
discussed below reveal no torsional displacements at equilibrium
(as well as no PJT displacements, which justifies the use of the
Hamiltonian, eq 21, we can as well use the diagonal elements
of Hel

JT rather than the surfaces of eq 22. The former cor-
respond to E component states of B1 and B2 symmetry in the
appropriateC2V subgroup, which is attained when displacing
the molecule along a B2 mode normal coordinate (of theD2d

point group). Since the B2 mode displacements have the effect
of removing the symmetry of the left (L) and right (R) terminal
CH2 groups, the overall distortion results in different structural
parameters for these moieties. With the linear coupling constants
and the vibrational frequencies noted in Table 1 one obtains
â(HCC) ) 136.4°, r(C-H) ) 1.01 Å, andR(C-C) ) 1.35 Å
for the L terminal andâ ) 119.5°, r ) 1.06 Å, andR ) 1.32
Å for the R terminal of the allene radical cation in the A˜ 2E
electronic manifold. The ground-state equilibrium geometry of
neutral allene corresponds toâ ) 120.82°, r ) 1.08 Å, andR
) 1.31 Å.17 Therefore, one can see that in the photoionization

H el
JT ) V01 +

(EE
0 + ∑

i)1

3

κiQi + ∑
i)5

7

λiQi
λ4Q4

λ4Q4 EE
0 + ∑

i)1

3

κiQi - ∑
i)5

7

λiQi
) (21)

V-(Q) ) V0(Q) + EE
0 + ∑

i)1

3

κiQi -

x(∑
i)5

7

λiQi)
2 + λ4

2Q4
2 (22)
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process mostly one terminal of the molecule is involved (here
called the L terminal). In Figure 4a the orbital diagram for one
1e component of C3H4

+ is shown. The photoelectron spectrum
results on ionizing an electron from this orbital. The highly
localized nature of this orbital immediately makes clear that
also the structural change is mostly localized on that terminal.
Of course, there is another 1e component orbital with L and R
term interchanged. The same holds then for the corresponding
geometry change. The above estimates are only approximate,
relying solely on the LVC model. We have further confirmed
this localization by optimizing the geometry for the A˜ 2E
electronic manifold of C3H4

+. We have carried out CASSCF
calculations for the open-shell system by employing a double-ú
basis set with polarization functions (DZP) on all atoms. The
CAS consists of seven electrons and eight valence orbitals. Four
of these orbitals are of B1 symmetry and another four are of B2

symmetry. The resulting optimized geometry is indicated in
Figure 4b. It can be seen that the optimized geometry corre-
sponds closely to the estimates given above. The deviations are
somewhat larger for the C-H bond distances.

The present finding of a highly localized distortion bears some
similarity to the phenomenon of “dynamic core-hole localiza-
tion” identified by us for systems with several equivalent core-
hole sites.44,45 In the latter case there is no degeneracy by
symmetry but rather a near-degeneracy of various symmetry
adapted core-hole states if the nuclear centers are significantly
far apart in space. This holds true, for example, for the C 1s
core-hole states of ethylene44 or the O 1s core-hole states of
CO2.45 For an asymmetric distortion that destroys the formal

equivalence of the core-hole sites the core-holes quickly
become localized, which in turn enables a distortion at equi-
librium that is mostly localized on one of the core-hole sites.44

In terms of delocalized (symmetry-adapted) vibrational modes
this gives rise to excitation of near-degenerate pairs of modes
that represent symmetrical and antisymmetrical contributions
of localized geometry changes. This is just what we find in
Figure 3c for the modesV2 and V7. Their normal coordinates
mostly represent symmetric and antisymmetric combinations of
HCH angle changes at both CH2 moieties. Remember, that it is
mostly the CH2 angle that undergoes a (localized) change
according to our above analysis. Thus, structural findings and
those on spectral line structures confirm each other in a
consistent manner. We mention in passing that the 2e orbital
of allene is similarly localized on either of the CdC double
bonds so that a similarly localized equilibrium structure of the
X̃2E ground state of the radical cation can be expected.

B. Time-Dependent Dynamics.We now discuss the fem-
tosecond internal conversion dynamics of C3H4

+ driven by the
nonadiabatic interactions. In Figure 5 the time evolution of the
Ã2E and B̃2B2 diabatic electronic populations are shown. The
wave packet is initially located on the B˜ 2B2 electronic state and
the population decay of this state is shown by the dotted line.
The growth of the A˜ 2E electronic populations (of thex andy
components) are shown by the solid and the dashed lines. Their
difference (which should be zero) is a measure for the
convergence of the calculations, which has not been fully
achieved for this property. However, since the error is small
we can neglect it for our present purposes. It can be seen from
Figure 5 that∼75% of the B̃2B2 state population decays within
5 fs. The population of this state becomes almost zero within
20 fs. This initial fast decay of the population relates to a decay
rate of ∼10 fs of the B̃2B2 electronic state and is due to the
PJT coupling with the A˜ 2E electronic manifold via the degener-
ate vibrational modes. At longer times a beat structure appears
in the B̃2B2 population curve, which is due to the recrossing of
the wave packet from the A˜ 2E to the B̃2B2 electronic state.

To understand the above population dynamics in a better way,
in Figure 6a-f we show snapshots of the wave packet evolving
in the Ã2E/B̃2B2 electronic manifold. The probability density
of the wave packet is superimposed on the potential energy
curves along the normal coordinate of the vibrational mode v2.
The potential energy curves and the wave packet probability

Figure 4. (a) Orbital diagram for one 1e component of C3H4
+

indicating its highly localized nature and (b) the CASSCF optimized
geometry for the A˜ 2E electronic manifold of C3H4

+. Bond lengths are
given in Å.

Figure 5. Time evolution of the diabatic electronic populations
obtained by locating an initial wave packet on the B˜ 2B2 electronic state
of C3H4

+. The decay of the population of the B˜ 2B2 electronic state is
shown by the dotted line and the growth of the populations of the two
components of the A˜ 2E electronic manifold is shown by the solid and
dashed lines, respectively.
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densities are shown as dashed and solid lines for the A˜ 2E and
the B̃2B2 electronic states, respectively. The zero of the
probability densities is chosen, for graphical reasons, to occur
near a potential energy of 15.28 eV. The vibrational modeV2 is
the strongest Condon active mode (cf. Table 1) and most of
the structures in the population diagram in Figure 5 can be
understood from the snapshots of the wave packet along this
mode. While the two components of the A˜ 2E electronic manifold
remain degenerate, a crossing of this manifold with the B˜ 2B2

electronic state occurs alongQ2. Because of the different signs
of the linear coupling constantsκ2 andκ′2, the minima of the
two electronic states are on opposite sides of the point of
crossing. Initially, the wave packet (not shown in the figure) is
located on the B˜ 2B2 electronic state, and therefore, the population
of this state starts from unity. In about 4 fs a considerable
population transfer occurs to the A˜ 2E electronic manifold (see
Figure 6a), which leads to the sharp decrease of B˜ 2B2 electronic
population in Figure 5 within this time. In about 8 fs (Figure
6b) the wave packet components on the two states move away

from the crossing point and in opposite directions (toward the
minimum of the respective potential energy curves). The
interference of the wave packet components in the vicinity of
the curve crossing leads to the appearance of structures in the
population diagram around that time. At longer time the wave
packet component on the B˜ 2B2 electronic state again moves
toward the point of crossing, and in about 18-20 fs (Figure
6c,d) much of the wave packet goes over to the A˜ 2E electronic
manifold and thus the B˜ 2B2 electronic population decreases
almost to zero. At longer times of∼40 fs, the wave packet
component of the A˜ 2E electronic manifold moves back toward
the crossing point and a fraction of it recrosses to the B˜ 2B2

electronic state (Figure 6e). This leads to the appearance of the
beat structure in the B˜ 2B2 electronic population diagram around
that time (see Figure 5). At still longer times of∼60 fs, the
wave packet component on the B˜ 2B2 state again goes over to
the Ã2E electronic manifold and this process of transfer of the
wave packet components back and forth between the two
electronic states continues until the end of the time evolution
considered.

IV. Summary and Conclusions

We have presented the results of our theoretical investigations
on the valence excited photoelectron spectrum of allene pertinent
to the Ã2E/B̃2B2 electronic manifold of the allene radical cation.
We employed a second-order vibronic Hamiltonian in the
calculations and have shown that the results differ considerably
from the ones obtained with a linear vibronic coupling scheme.
Ab initio calculations were carried out in order to determine
the coupling constants of the Hamitonian and the optimized
geometries of the excited states of the radical cation. The full
photoelectron band was calculated by a wave packet propagation
technique within the MCTDH scheme considering all fifteen
vibrational degrees of freedom. Our results are in good
agreement with the high-resolution experimental recording of
Baltzer et al.23 The structures in the photoelectron band are
carefully analyzed through companion calculations of the stick
vibronic spectra in reduced dimensions. The time-dependent
dynamics is further illustrated in terms of time evolution of the
diabatic electronic populations as well as nuclear probability
densities. The photoelectron band exhibits regular progressions
of peaks at low energy and a highly diffused structure at high
energies. In our previous study, following Woywod and
Domcke26 we confirmed that the structures at low energies
originate solely due to the EXB JT activity within the Ã2E
electronic manifold. However, we found that the highly diffuse
structure at high energies originates mainly from PJT type of
interactions of this electronic manifold with the next higher B˜ 2B2

electronic state. Following earlier theoretical work we assigned
the low-energy spectral progressions to theV2 andV7 vibrational
modes. In contrast, Yang et al., in their experimental work
proposed these progressions to be due to theV2 andV3 vibrational
modes. In this present work we have resolved this discrepancy
and found that the low-energy progressions are formed by the
vibrational modeV3 and a combination of modesV2 andV7.

The combined excitation ofV2 andV7 has been related to a
localized geometry change in the A˜ 2E state of C3H4

+, i.e.,
affecting only one of the C-CH2 terminal groups. This new
finding is related to the phenomena of dynamical core-hole
localization identified by us earlier for quite different systems.
It has been corroborated by unconstrained geometry optimization
and can be understood by inspecting the nodal properties of
the pertinent molecular orbital. The agreement between the
structural data predicted by the PJT model and those resulting

Figure 6. Probability densities (|Ψ|2) as a function ofQ2 integrated
over all other coordinates of the wave packet at different times
(indicated in each panel) superimposed on theQ2 potential energy
curves (parabolae) of the A˜ 2E and B̃2B2 electronic states of C3H4

+.
Only the density for one component of the A˜ 2E electronic manifold is
plotted, and the solid and dashed lines refer to the A˜ 2E and B̃2B2

electronic states, respectively. The zero of the density has been chosen,
for graphical reasons, to occur near a potential energy of 15.28 eV.
The scale for the probability density is arbitrary but identical for all
|Ψ|2 displayed in the figure.
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from the unconstrained geometry optimization provides a test
for the validity of the PJT model which underlies the dynamical
calculations.

The time evolution of the diabatic electronic populations
reveals a nonradiative decay time of∼10 fs of the B̃2B2

electronic state of the allene radical cation mediated by the PJT
interaction with the A˜ 2E electronic manifold through the
degenerate vibrational modes. The transformation of the wave
packet components through the A˜ 2E/B̃2B2 crossing seam is
analyzed to shed further light on the population dynamics. The
Ã2E/B̃2B2 photoelectron band of allene radical cation represents
a unique and complex example of the interplay between the JT
and PJT type of interactions, with nondegenerate vibrational
modes involved in the JT activity. The detailed theoretical
investigations presented here, therefore, adds to the understand-
ing of such interactions in molecular dynamics.
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